Esrrb Complementation Rescues Development of Nanog-Null Germ Cells

نویسندگان

  • Man Zhang
  • Harry G. Leitch
  • Walfred W.C. Tang
  • Nicola Festuccia
  • Elisa Hall-Ponsele
  • Jennifer Nichols
  • M. Azim Surani
  • Austin Smith
  • Ian Chambers
چکیده

The transcription factors (TFs) Nanog and Esrrb play important roles in embryonic stem cells (ESCs) and during primordial germ-cell (PGC) development. Esrrb is a positively regulated direct target of NANOG in ESCs that can substitute qualitatively for Nanog function in ESCs. Whether this functional substitution extends to the germline is unknown. Here, we show that germline deletion of Nanog reduces PGC numbers 5-fold at midgestation. Despite this quantitative depletion, Nanog-null PGCs can complete germline development in contrast to previous findings. PGC-like cell (PGCLC) differentiation of Nanog-null ESCs is also impaired, with Nanog-null PGCLCs showing decreased proliferation and increased apoptosis. However, induced expression of Esrrb restores PGCLC numbers as efficiently as Nanog. These effects are recapitulated in vivo: knockin of Esrrb to Nanog restores PGC numbers to wild-type levels and results in fertile adult mice. These findings demonstrate that Esrrb can replace Nanog function in germ cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Esrrb Is a Direct Nanog Target Gene that Can Substitute for Nanog Function in Pluripotent Cells

Embryonic stem cell (ESC) self-renewal efficiency is determined by the level of Nanog expression. However, the mechanisms by which Nanog functions remain unclear, and in particular, direct Nanog target genes are uncharacterized. Here we investigate ESCs expressing different Nanog levels and Nanog(-/-) cells with distinct functionally inducible Nanog proteins to identify Nanog-responsive genes. ...

متن کامل

Estrogen-related receptor beta interacts with Oct4 to positively regulate Nanog gene expression.

Embryonic stem (ES) cell self-renewal is regulated by transcription factors, including Oct4, Sox2, and Nanog. A number of additional transcriptional regulators of ES cell self-renewal have recently been identified, including the orphan nuclear receptor estrogen-related receptor beta (Esrrb). However, the mode of action of Esrrb in ES cells is unknown. Here, using an Oct4 affinity screen, we ide...

متن کامل

Ncoa3 functions as an essential Esrrb coactivator to sustain embryonic stem cell self-renewal and reprogramming.

Embryonic stem cell (ESC) pluripotency depends on a well-characterized gene regulatory network centered on Oct4, Sox2, and Nanog. In contrast, little is known about the identity of the key coregulators and the mechanisms by which they may potentiate transcription in ESCs. Alongside core transcription factors, the orphan nuclear receptor Esrrb (estrogen-related receptor β) is vital for the maint...

متن کامل

Germ Cell Nuclear Factor is Not Required for the Down - Regulation of Pluripotency Markers in Fetal Ovarian Germ Cells

In mouse, germ cells retain expression of the pluripotency markers Oct4 and Nanog longer than any other cells in the body. While somatic cells repress these markers during gastrulation, female germ cells continue to express them until around the time of meiotic initiation. It is not yet clear why pluripotency markers are downregulated with this particular timing, nor is it understood what facto...

متن کامل

Pluripotency re-centered around Esrrb.

The orphan nuclear receptor estrogen-related receptor b (Esrrb) is a vital component of the core pluripotency network in embryonic stem cells (ESCs). However, its function is not clear and the identity of potential upstream regulators has remained elusive. Three elegant reports (Festuccia et al, 2012; Martello et al, 2012; Percharde et al, 2012) have now elucidated the role of Esrrb in ESC self...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2018